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HEAT AND MASS TRANSPORT IN PETROLEUM-BEARING EARTHS 

D. P. Volkov, G. N. Dul'nev, 
B. L. Muratova, and A. B. Utkin 

UDC 536.2.08:553.061.31 

A model for the structure of oil-bearing earth is offered together with a method 
for calculating its thermal conductivity with Consideration of diffusion transport. 
Calculation resutls are presented as is an experimental determination of effective 
thermal conductivity of model materials and specimens of oil-bearing earths. 

A major factor in increasing petroleum output is played by increasing the extractable 
fraction of geological reserves in oil fields. At the present time extraction methods in- 
volving thermal action on the oil stratum are being developed and put into use: heating of 
crack zones adjoining drillings by vapor, electrical heaters, and chemical reaction heat; 
forcing heating agents into the stratum -- hot water, water vapor, hot gases; and creation 
of a moving combustion hearth within the stratum. 

Study of the nonsteady-state temperature field permits determination of the size of the 
heated zone and the thermal utilization coefficient -- the ratio of the heat accumulated in 
the stratum to that introduced into the stratum -- and selection of a heatagent flowrate to 
produce desired heating conditions. 

To calculate temperature fields within the plate, a knowledge of the thermophysical 
characteristics of oil-bearing soils is necessary. In the majority of cases measurements 
have been performed for concrete drillholes and locations, which allows use of such data 
under other conditions only with serious reservations. Oil-bearing earths are within the 
class of capillary porous bodies, the poresof which may contain liquid. Heat transport 
through moist bodies is normally accompanied by molecular transport of vapor and liquid, 
produced by the temperature gradient. Therefore, the majority of studies have used not true, 
but effective thermophysical properties, in particular, an effective thermal conductivity. 
The latter depends on many parameters, including the temperature gradient, pressure, relative 
direction of the gravitational force and thermal flux vectors, so that it is not as much a 
physical characteristic of the soil as a regime parameter. 

Approximately 85% of oil-bearing locations contain petroleum in sedimentary deposits 
in the form of sands and sandstones, which consist of grains of quartz, feldspar, and mica, 
bound together primarily by a carbonate and clay cement. Figure i shows a schematic diagram 
of an oil-bearing soil. The grains and cement form a solid skeleton in the pores of which 
liquid and vapor are located. Depending on the volume of liquid within the material, the 
liquid either completely fills the pores (A), or a portion of the pores, spreading over the 
internal surface of the pore in the general case (B), while a portion of the pores remain 
dry (C). If we denote the total pore volume within the material by Vp, the dry pore volume 
by Vd, the liquid volume by VZ, and the gas volume in the pores the walls of which are wet 
by liquid by V m (volume of moist pores), then 

Vp = v d + vs v m. (1) 
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Fig. i. Schematic diagram of oil-bearing soil: i) grain; 2) binding cement; 
3) liquid; 4) liquid vapor; A) pore completely filled by liquid; B) pore filled 
by liquid and vapor; C) dry pore. 

Fig. 2. Fractions of pore volume filled by liquid (V/), liquid vapor (moist 
pores) (Vm) , dry gas (Vd) ; volumes VsA, VsB occupied by components A and B of 
skeleton: a) m = 0, V m = 0, V d = i; b) ~ = 0.i, V 1 = 0.i, V m = 0.6, V d = 0.3; 
c) m = 0.8, V l = 0.8, V m = 0.19, V d = 0.01; d) ~ = 1.0, V l = 1.0, V d = V m = 0. 

k 

3,O 
2,O 

I,O 

q#O 
03O 
q2o 

o, za 

o, o5 
o, o3 
0,o2 

o,o/o 

k 

f 

5 a 

0 o 

//__L - 

/l I i 

Fig. 4 Fig. 3 

Fig. 3. Diffusion component of thermal conductivity % d vs temperature t 
at normal pressure: i) calculation with Eq. (7); 2) experimental curve 
found by comparing calculated and experimental thermal conductivity values; 
3) calculation with Eq. (8) for ~ = 2.8; 4) thermal conductivity of water 
vs temperature; 5) thermal conductivity of air vs temperature at normal 
pressure; ~, W/(m.K); t, QC. 

Fig. 4. Thermal conductivity of glass filters vs moisture content m at 
various temperatures: i, 2, 7) t = 94~ 3, 8) 83; 4, 9) 67; 5, i0) 50; 
6, ii) t = 26~ i) calculated, diffusion component h d defined by Eq. (7); 
2-6) calculated, k d = f(t) values defined by experimental dependence 
(curve 2, Fig. 3); 7-11) experimental curves. 
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F i g .  5 .  E f f e c t i v e  t h e r m a l  c o n d u c t i v i t y  o f  q u a r t z  
spheres vs moisture content m at various tempera- 
tures: i, 6) t = 94~ 2, 7) 83; 3, 8) 67; 4, 9) 
50; 5, i0) t = 26~ 1-5) calculated values; 6-10) 
experimental data. 

TABLE i. Thermal Conductivity of Oil-Bearing Materials 

Specimen 

Sandstone 

Sandstone with 
clay inclusions 

Oii sand 

Moisture 
content 

0,0 
0,5 
0,5 

0,5 

Porosity ~ I 

0,17 

0,33 

0,39 

Thermal conductivit~ 

expt., %ex 

1,45 
2,10 
0,75 

0,66 

t a l c .  

1,47 
2,16 �9 
O, 74 

0,67 

Below we will utilize the concepts of porosity H, moisture content m, and the parameter b, 
equal to the ratio of the volume V m of moist pores to the volume (Vp -- V l) of pores not 
occupied by liquid: 

n = vp iv,  ~ = vz /vp~ b = v m . / ( V p -  vz ) .  

Transforming from Eqs. (i), (2) we obtain volume concentrations 

v z I v :  ~n ,  v m / v  = n 0 - ~) b, v d i v  = n i l  . -  ~ )  0 - b), 

and Eq. (1)  t a k e s  on, t h e  form 

(2) 

(3) 

n - -  mn + n(1 --m) b + n(1 --m)(1 - -  b). (4) 

Krisher [l] has experimentally established a relationship between the quantity of moist 
pores and moisture content for a number of solid materials, in the form of an equation 

b = l - - e x p ( - - 7 o ) .  (5) 

As follows from Eqs. (3) and (5), with increase in moisture content the concentration Vl/V 
of pores completely filled by liquid increases while the concentration Vd/V of dry pores 
decreases. With increase in moisture content the concentration of moist pores Vm/V in- 
creases from zero to approximately Vm/V = 0.7 for ~ = 0.2, then falls to zero. The variation 
in the fraction of various pore types with change in ~ is shown in Fig 2, these changes 
leading to a complex dependence of thermal conductivity on moisture content, as will be 
shown below. 
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If the walls of the pores are wetted, then within the volume of air occupying these 
pores a partial vapor pressure gradient develops in the presence of temperature differences. 
Evaporation of moisture occurs at the hotter points of the wall with condensation at colder 
points. Then we must add heat transport by diffusing vapor X d upon its condensation in those 
portions of the pores where the temperature is lower to the heat transport due to molecular 
thermal conductivity Xg. Neglecting radiant and convective thermal conductivity within the pore 
we will term the sum of the conductivities Xg + ~d the thermal conductivity X m of a moist 
pore: 

Zm =- 2g @ Zd (6) 

The value of the diffusion component of the thermal conductivity is usually calculated from 
an expression found for an infinite slot bounded by parallel planes [i]: 

D P dP' R 
~d- - .  - - P '  r ,  R . =  ~ .  (7) 

RoT P dT M 

It was shown in [2] that in dispersed materials the diffusion transport will be reduced 
somewhat due to curvature of the pores. The same study also presented experimental and 
calculated values of the diffusion resistance coefficients for several dispersed materials 

= D/D', equal to the ratio of the diffusion coefficient D of the vapor in air to the vapor 
diffusion coefficient D ! in the porous body. Depending on porosity, structure, and other 
factors this coefficient ~ can vary from 2.5 to i0, i.e., the diffusion component of thermal 
conductivity decreases by a factor of ~ times, and Eq. (6) takes on the form 

D P dP' R 
~',d-- pRoT P - -  P'  dT r, R o =  M (8) 

We will now turn to selection of a model of oil-bearing ground simpler than that shown in 
Fig. I. We will represent the soil as a solid skeleton of cemented grains penetrated by 
continuous pores, i.e., a structure with interpenetrating components [3]. The pores of the 
skeleton contain gas, vapor, liquid (petroleum, water, petroleum emulsion, etc.). The 
thermal conductivity of the grains (SiO2) and cement (CaC03) are approximately the same -- 
3 W/(m~ so that the thermal properties of the skeleton will be considered homogeneous. 
We note that basic information on oil-bearing soils is obtained by laboratory analysis of 
grains of the soil, with determination of the total porosity ~ and moisture content m. 
These data will be considered as a basis for calculating thermal conductivity of the oil- 
bearing soil. The remaining parameters necessary for the calculation depend on these basic 
ones and are determined from the geometric structure of the model. 

Thus, the model is one of a multicomponent system with mutually penetrating components: 
a solid skeleton (with volume Vs) and pores filled by liquid (V~), gas (Vg), and liquid with 
vapor (Vm). A mes for exact calculation of the thermal conductivity of such a multi- 
component system was presented in [4]. In the first approximation the calculation can be 
performed by reducing the multicomponent system to a two-component one with mutually pene- 
trating components i and j, the thermal conductivity of which %ij is equal to [3]: 

g'i# = %1 [c~ -Z (1 - -  cj)2~i# -~ 2vuc i (1 - -  cj)/(~;ijcj -~  1 - -  cj)] ,  

v u  - 2v/g~, rn~ + mj  = 1. 
(9) 

The parameter cj is determined by solution of the cubic equation: 

2c~ - 3c~. + I = mj.  ( i0 )  
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Equation (9) is the fundamental calculation expression which will be used to determine 
thermal conductivity for various components i and j in various stages of the calculation. 

In accordance with this approach in the first stage we will find the thermal conductivity 
hml of a binary mixture of interpenetrating components -- the liquid j = I and moist air i = 
m. It is then necessary to find the volume concentration of liquid ml, equal by definition 
to m I = VI/(V l + Vm). Using Eq. (2), with the aid of identical transformations we write 

m~ = �9 (11) 
o + b ( 1 - - b )  

We perform the calculation of the thermal conductivity Xml of binary moist (ml) mixture with 
Eq. (9), taking 

~ms = k~ /~ .  ci  : [(mg.), ~'m = Zg + ~d ' (12)  

and defining the thermal conductivity Xd by Eq. (7). 

Now the structure of the moist material can be represented as a three-component one: 
the solid skeleton, dry and moist pores. We reduce this system to a two-component one in the 
form of two mixtures, one of which consists Of a mixture of a portion of the solid skeleton 
(with volume VsA) with moist pores, and the other the portion of the solid skeleton (with 
volume VsB) with dry pores (Fig. 2). Each mixture is then a system with mutually penetrating 
components with effective thermal conductivities hlm and %ig, calculation of which is done 
with Eq. (9) in the second and third stages of the analysis. 

Thus, we turn to the second stage and define the thermal conductivity %:m of the first 
mixture using the thermal conductivity of the solid skeleton %1(i = i) and the moist pores 
Xml( j = ml). By definition the volume concentration of the latter is equal to Vml = (V 1 + 
Vm)/VsA; using definition (2) we obtain for mml the expression: 

m m s  H. (13) 

In the second stage of the analysis in Eq. (9) we use the following notation: 

i -= 1, i = m ~ ,  vi j=:~lm=~,ms Oms163 mms mi = 1. 
(14) 

In the third stage we define the thermal conductivity Xlg of a mixture of solid skeleton 
(i = i) and dry gas (j = g), the volume content of which is equal to mg = Vd/VsB = E. In 
Eq. (9) we then use the values: 

i =  1, ] = g ,  Nij--Xlg, ~lg~ ~,'~1, o =  f ( n ) .  (15) 

The fourth and final stage consists of using Eq. (9) to calculate the thermal conductivity 
h of a binary system with interpenetrating components having thermal conductivities %im and 
2ig, with values 

i = lg, ] ---- Ira, ' v i i =  'v = ~lm/%:lg, c = [ (mlm.) ,  

The volume concentration of component j is equal to 

(16) 

m J m = ( V  ~ + V  m @VsA)/V=ro+b(1--o~). (17)  

C o m p a r i s o n  o f  r e s u l t s  o f  c a l c u l a t i o n s  w i t h  t h e  p r o p o s e d  m e t h o d  and e x p e r i m e n t  r e v e a l s  t h a t  
u s e  o f  Eq.  (7 )  f o r  t h e  d i f f u s i o n  c o m p o n e n t  o f  t h e  t h e r m a l  c o n d u c t i v i t y  l e a d s  t o  e l e v a t e d  
values for the effective thermal conductivity of the soil over the entire range of variation 
of moisture content m, aside from the limits of completely dry m = 0 and completely saturated 

= 1 material (curve i, Fig. 4). 

The proposed model and calculation method together with experimental results were used 
to solve the converse problem: the temperature dependence of the diffusion component of 
thermal conductivity was found: %d = f(t). The experimental data were obtained for several 
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model materials simulating oil-bearing soils: glass filters, and pored masses of quartz 
spheres. Figure 3 shows the dependence of the diffusion component of thermal conductivity 
%d on temperature t. As is evident from thefigure, the divergence between curves i and 
2 reaches ~ 100%, while curves 2 and 3 practically coincide. Below, thefunction %d, curve 
2, will be used to calculate the effective thermal conductivity of the grainy material -- 
quartz spheres at various temperatures and moisture contents. A comparison of calculated 
and experimentally determined thermal conductivity values is presented in Figs. 4 and 5, 
with differences not exceeding ~i0%. Results of a comparison for oil-bearing soils are pre- 
sented in Table i. 

As is evident from Figs. 4 and 5, the dependence of effective thermal conductivity of 
the model materials on moisture content for temperatures below approximately 60~ is mono- 
tonic in character, increasing with increase in moisture content, with limiting values of 
the effective thermal conductivity corresponding to dry ~ = 0 and totally saturated m = i 
materials. At temperatures above 60~ the curves have a maximum, more clearly expressed 
the higher the temperature. This character of the dependence can be explained by the fact 
that at temperatures below 60~ the thermal conductivity of moist pores is less than that 
of the liquid (curve 4, Fig. 3), so that the major contribution to effective thermal con- 
ductivity is produced by the liquid, the volume of which increases with increase in moisture 
content. At temperatures above 600C the thermal conductivity of moist pores h m becomes 
greater than that of the liquid and now produces a significant contribution to the effective 
thermal conductivity of the material. It was noted above that the volume of pores V m having 
a thermal conductivity h m (moist pores) initially increases with moisture content, reaches 
a maximum, then begins to decrease (see Fig. 2). Therefore, the dependence of the effective 
thermal conductivity of the moist material on moisture content is of an extremal character. 
Thus, to estimate the thermal conductivity of moisture-bearing materials such as soils and 
oil-bearing strata one can use a simple model. If it is necessary to refine the effect of 
individual parameters (grain diameter, granulometric composition, etc.) on effective thermal 
conductivity, a more complex model of a bound polydispersed medium must be created. 

Example. Calculation of a glass filter with water at a temperature of t = 94~ filter 
porosity H = 0.54, moisture content 50% (~ = 0.5). 

From handbook data [5] at a temperature of t = 94~ the thermal conductivity of glass 
is equal to 0.90; that of water, 0.68; and air, 0.04 W/(m-K). 

Stage I. We use Eq. (9) to determine the thermal conductivity %ml of a binary system 
of moist air i = m and liquid j = l, hl = 0.68 W/(m-K). We find the thermal conductivity of 
the first component with Eq. (6), in which h E = 0.04 W/(m'K) and hd -- 2.00 W/(m-K), and use 
curve 3 (Fig. 3) to find h m = 0.04 + 2.00 = 2.04 W/(m.K). Then from Eq. (5) with the known 
moisture content m = 0.5 we find b = 0.96 and use Eq. (ii) to calculate the volume concen- 
tration m I = 0.5/[0.5 + 0.96(1-0.5)] = 0.51. With Eqs. (9), (i0), (12) we obtain 
~ml = 0.68/2.04 = 0.33, c I = 0.49, hml = 2.04[0.492 + (1-0.49)2.0.33 + 2.0.33"0.49(1-0.49)/ 
(0.33.0.49 + 1-0.49)] = 1.18 W/(m.K). 

Stage II. We determine the thermal conductivity %im of a binary mixture consisting of 
the solid skeleton i = I, h I = 0.90 W/(m-K) and the component j = ml, %ml = 1.18 W/(m.K) 
with Eqs. (9)-(ii), (13), (14) Vlm= 1.18/0.9 = 1.31, Cm/ = 0.47, hlm = 0.90[0.472 + (i- 
0.47)2.1,31 + 2.1.3).-0.47(1-0.47)/(1.31-0.47 + 1-0.47)] = 1.04 W/(ra.K). 

Stage III. We calculate the thermal conductivity %ig of a binary mixture consisting 
of the solid skeleton i = I, hl = 0.90 W/(moK) and the dry gas j = g, h = 0.04 W/(m-K), with 
Eqs. (9), (i0), (15) Wlg = 0.04/'0.09 = 0.04, Cg =0.47 %ig = 0.90[ 0.47z g (i-0.47)z'0. 04 + 
2-0.04-0.47(_i-0.47)/(0.04 x 0.47 + 1-0.47)] = 0.22 W/(m.K). 

Stage IV. We calculate the effective thermal conductivity of a binary mixture consisting 
of a first component i = im, lim = 0.22 W/(m.K) and a second component j = im, %:m = 1.04 
W/(m~ and use Eqs. (9), (i0), (17), with the volume concentration of the second component 
defined by Eq. (16), mlm = 0.5 + 0.96(1-0.5) = 0.98, ~ = 1.04/0.22 = 4.73, c = 0.08, h = 
0.22[00082 + (1-0.08)2-4.73 + 2-4.73.0.08(1-0.08)/4.73-0.08 + 1-0.08)] = 1.00 W/(m-K). 

For comparison, the experimental value of thermal conductivity of a moist glass filter 
at t = 94~ with moisture content m = 0.5 is hex = 0.98 W/(m-K). The divergence between these values 
comprises (A%/h)% = (0.98-1.00)-100/0.98 ~--2%. 
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NOTATION 

V, unit volume of material; Vp, pore volume in material; Vd, dry pore volume; Vl, liquid 
volume; Vm, moist pore volume; Vs, skeleton volume; H~ pQrosity; ~, moisture content; b, 
parameter describing quantity of moist pores; %~' %g' Xd' %m, thermal conductivities of 
solid skeleton, gas, diffusion component, and moist pore, W/(m-K); D, D', diffusion co- 
efficients for vapor and air in smooth slot and porous material, m2/sec; R, universal gas 
constant, J/(mole.K); T, absolute temperature, K; P, total pressure of gas mixture; P', 
partial pressure of liquid vapor, N/m=; r, heat of vapor formation, kJ/kg; molecular mass, 
kg/mole; %~j, thermal conductivity of binary mixture of components i and j, W/(m.K); mi, mj, 
volume concentrations of components i and j ; cj, parameter dependent on volume concentration 
of component j. 
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THE GENERALITY OF EQUATIONS FOR MIXED-CONVECTIVE HEAT 

TRANSFER TO LIQUIDS AT SUPERCRITICAL PRESSURE IN VERTICAL PIPES 

V. A. Bogachev and V. M. Eroshenko UDC 536.24 

Using experimental data for helium at supercritical pressure which were obtained for 
ascending and descending flow in a vertical pipe, we verified the validity of a 
number of known equations for mixed-convective heat transfer. 

Several equations are being recommended today for calculating mixed-convective heat trans- 
fer to liquids at supercritical pressure in vertical pipes; these equations are essentially 
based on experimental data obtained for water and carbon dioxide: 

for descending flow [i] 

Nu - N u  e [ (K), 
- -  n 0 , 3  w h e r e  Nu e Nuo(cp/cps (Pw/9s [2]; f ( K ) =  1 f o r K =  (1 - -9 ,w/ps  < 0 . 1 5 ,  

0 . 1 5 < K < 6 ,  

f o r  a s c e n d i n g  and  d e s c e n d i n g  f l o w  i n  t h e  r e g i o n  G r / R e  2 < 0".6 [3]  

(1) 
[ (K)=2,75K ~ for 

NUc = Re Pr ~i/8 , (2)  
1 q- 12.7 l/g~/8 {[Pr* pg/p~ (1 -J- K)] ~ - -  1 - -  0.1 K 2} 

where ~a, Pr*, 0~ and K are the parameters defined in [3], 

for ascending flow [4] 

Nu = NU:c [(K),  (3)  
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